
Automatically Prioritizing Pull Requests
Erik van der Veen

Delft University of Technology
the Netherlands

Email: erikvdv1@gmail.com

Georgios Gousios
Radboud University Nijmegen

the Netherlands
Email: g.gousios@cs.ru.nl

Andy Zaidman
Delft University of Technology

the Netherlands
Email: a.e.zaidman@tudelft.nl

Abstract—In previous work, we observed that in the pull-based
development model integrators face challenges with regard to pri-
oritizing work in the face of multiple concurrent pull requests. We
present the design and initial implementation of a prototype pull
request prioritisation tool called PRioritizer. PRioritizer works
like a priority inbox for pull requests, recommending the top pull
requests the project owner should focus on. A preliminary user
study showed that PRioritizer provides functionality that GitHub
is currently lacking, even though users need more insight into
how the priority ranking is established to make PRioritizer really
useful.

I. INTRODUCTION

Pull-based development as a distributed development model
is a distinct way of collaborating in software development. In
this model, the project’s main repository is not shared among
potential contributors; instead, contributors fork (clone) the
repository and make their changes independent of each other.
When a set of changes is ready to be submitted to the main
repository, they create a pull request, which specifies a local
branch to be merged with a branch in the main repository.
A member of the project’s core team (the integrator) is
responsible to inspect the changes and integrate them into the
project’s main development line.

In earlier work [1], we surveyed 750 pull request integrators
from high volume projects and discovered that the top two
challenges they face when working with pull requests are
maintaining project quality and prioritizing work in the face of
multiple concurrent pull requests. With respect to pull request
prioritization our findings are summarized in Figure 1.

In this paper, we present the design and initial imple-
mentation of a prototype pull request prioritization tool, the
PRioritizer. PRioritizer works as a priority inbox for pull
requests: it examines all open pull requests and presents
project integrators the top pull requests that potentially need
their immediate attention. It also offers an alternative view
to Github’s pull request interface, which allows developers
to sort open pull requests on a multitude of criteria, ranging
from the pull request’s age to its number of conflicts with
other open pull requests (pairwise conflicts). PRioritizer is a
service-oriented architecture build on top of GHTorrent [2]: it
uses GHTorrent’s data collection mechanisms to react in near
real-time to changes in pull request state.

age

complexity

contributor origin

contributor track record

criticality of fix

dependencies

existence of tests

impact

merge conflicts

project roadmap

quality

review cycle

reviewer availability
reviewer familiarity

size of change

type

urgency of feature

age

complexity

contributor origin

contributor track record

criticality of fix

dependencies

existence of tests

impact

merge conflicts

project roadmap

quality

relevance to project

review cycle
reviewer availability

reviewer familiarity

size of change

test result

type

urgency of feature

age

complexity

contributor origin

contributor responsiveness

contributor track record

criticality of fix

dependencies

existence of tests
impact

merge conflicts
project roadmap

quality

relevance to project
review cycle

reviewer availability

reviewer familiarity

size of change

test result

type
urgency of feature

(no 3rd criterion)

Fig. 1: Prioritization criteria and their order of application as
reported by 750 integrators [1].

II. PRIORITIZING PULL REQUESTS

A. Modeling

Contrary to work prioritization approaches that support
development-oriented decisions (e.g. bug triaging) [3], [4], [5],
we modelled the pull request prioritization using the priority
inbox approach [6]. The difference lies in that we do not only
look at static information with regard to the pull requests, but
we also take into account (the dynamics of) previous actions
on pull requests. What PRioritizer tries to do is present the
integrators with the pull requests that will need their immediate
attention.

To select the important pull requests, PRioritizer uses ma-
chine learning. Initially, time is split in configurable time win-
dows (currently, 1 day long). In each time window, PRioritizer
calculates a list of features for all pull requests (dependent
variables, explained below) and a boolean response variable
that indicates whether the pull request received a user action
in the following time window. A machine learning algorithm is
then trained on historical data to build a model for predicting
whether current pull requests will receive user updates in the
following time window. The pull requests with the highest
probability to be updated are classified as the important ones.

RabbitMQ

GitHub

Watcher

MongoDB

MySQL Predictor

Analyzer Visualizer

Git

PRioritizerGHTorrent

1 2
3

4

7

5
6

Fig. 2: Diagram of the architecture. It shows the different data
sources and components used by the PRioritizer service.

B. Features

Our feature set was extracted by analysing the results of the
survey [1] and closely correspond to the developer’s answers
as reported in Figure 1. An overview of the selected features
can be seen in Table I.

One of the top parameters that developers examine when
prioritizing is the size of change. We therefore include 4
related features in our model, namely additions, deletions,
commits and files. Developers also deem the age of the pull
request important: we measure it within the examined time
window as the elapsed time between the time window start
and the pull request creation. The contributor’s track record
is also taken into account by integrators. To approximate the
track record, we use 3 features: whether contributors are core
team members, their contribution rate and their pull request
acceptance rate. The contribution rate is calculated by taking
the number of commits which are authored by the contributor
and included in the project divided by the total number of
commits in the project. Finally, a feature that emerges as
important second prioritization criterion is the existence of
tests. In some projects it is often expected that new pull
requests contain tests for the code they modify or add. Tests
are identified by simple heuristics: if “test” or “spec” are in
the file path of any file affected by the pull request, then the
pull request is marked as having tests.

III. DESIGN AND IMPLEMENTATION

We designed PRioritizer as a loosely-coupled architecture
based on independent micro services. Figure 2 shows a global
overview of the architecture. The PRioritizer service uses two
main data sources: GitHub and the GHTorrent project. When
an event arrives the watcher component is notified (1) and
starts prioritizing the project (2). When the analyzer gets a
prioritization request, it fetches a list of open pull requests
from GitHub and the pull request contents to the local Git
clone (3). When the data is fetched, the analyzer processes
each pull request in the list with data from the local clone
and GHTorrent (4). The data is now ready to be processed by

the predictor (5), which generates an ordering for the pull
requests. After the ordered list is returned to the analyzer
(6), the output is generated and available for the visualizer
(7). Details about the design are presented in the following
sections.

a) GHTorrent: GHTorrent [2] mirrors all data exposed
from the GitHub API in real time. It monitors the GitHub
event timeline API endpoint and publishes the retrieved data
to a queue service (RabbitMQ) where multiple clients can
connect to. It also maintains 2 databases, an unstructured one
(MongoDB) which contains the raw replies from the GitHub
API and a relational one (MySQL) which stores indexed
historical data for all GitHub repositories. PRioritizer uses
GHTorrent as a source for both live and historical data. The
live data that the PRioritizer is interested in are events on pull
requests triggered by actions such as assignment of the pull
request to a specific user or merging the pull request.

b) Watcher: The watcher listens to pull request events
from GHTorrent via a RabbitMQ message queue. It maintains
a list of registered repositories and informs the analyzer when
pull request events for one of those is repositories is received.

c) Analyzer: The analyzer analyzes pull request events
and computes values for the features presented in Section II-B.
To do so, for each repository, it maintains a local Git checkout
and a list of open pull requests. On every pull request event, it
updates both the Git repository with a branch corresponding to
the source branch of the pull request and the open pull request
list with fresh information from GHTorrent. Then, it uses both
GHTorrent and information into the raw pull request data to
calculate all features in the current time window.

The analyzer also implements a high-performance pull
request pairwise conflict detection mechanism that works by
simulating pairwise merges in memory. To avoid recomputing
valid branch merges, it caches intermediate results.

To maintain high performance, all independent processes
(Git repository updating, conflict detection etc) are initiated
asynchronously and their results are gradually composed to-
wards a final set of metrics for the processed pull request.

d) Predictor: The predictor calculates the probability
that a specific pull request will be active within the next
time window. To do so, it maintains a per repository model
extracted by applying a machine learning algorithm to existing
pull requests and then uses the computed model to calculate
probabilities for currently updated pull requests.

The predictor is split in two parts: the historic data calculator
and the machine learning implementation. The first shares
code (but not the runtime) with the analyzer as both tools
basically compute the same values in different time windows.
To capitalize on the wealth of available options in statistical
environments such as R, the machine learning part is imple-
mented as a different service that communicates with the main
predictor process through file exchange.

e) Visualizer: The visualizer visualizes a list of pull
requests, enriched with information extracted from the analysis
and prediction phases. To address reported deficiencies in
GitHub’s pull request user interface (also discovered through

Feature Description 5% Mean Median 95% Plot
Age Minutes between open and the current time window start time. 0.00 167344.02 77760.00 646560.00

Contribution Rate The percentage of commits by the author currently in the project. 0.00 0.03 0.00 0.094
Accept Rate The percentage of the author’s other PRs that have been merged. 0.00 0.45 0.50 0.90

Additions Number of lines added. 1.00 3649.86 41.00 6285.00
Deletions Number of lines deleted. 0.00 2271.32 7.00 2353.00
Commits Number of commits. 1.00 6.52 2.00 22.00

Files Number of files touched. 1.00 53.88 2.00 125.00
Comments Number of discussion comments. 0.00 4.22 1.00 17.00

Review Comments Number of code review comments. 0.00 1.60 0.00 8.00
Core Member Is the author a project member? 0.00 0.26 0.00 1.00

Intra-Branch Are the source and target repositories the same? 0.00 0.06 0.00 1.00

Contains Fix Is the pull request an issue fix? 0.00 0.098 0.00 1.00

Last Comment Mention Does the last comment contain a user mention? 0.00 0.091 0.00 1.00
Has Test Code Are tests included? 0.00 0.35 0.00 1.00

TABLE I: Selected features and descriptive statistics for predicting pull request activity. The calculation unit is a pull request.
Histograms (red) are in log scale.





PRioritizer Help



owncloud

/

core

Filter

Pull

requests

(1-5

of

196)
←

Previous

–

Next

→

Branch

Mergeable

Author

Tests

Conflicts

Sort

⚡

only

create

a

db

entry

for

the

user

in

case

of

a

name

...

schiesbn

wants

to

merge

owncloud:sharing_no_user_entry_for_group_s...

into

master

#13920
2

hours

ago

⚡

[WIP]

Fix

update

detection

for

Dropbox
PVince81

wants

to

merge

owncloud:extstorage-dropbox-hasupdated

into

master




#6069
a

year

ago

Author


PVince81

(core

member)


7%

contributed

commit(s)



36%

accepted

pull

request(s)

Size


14

comment(s)



2

commit(s)



1

file(s)

Other


contains

no

test

file(s)


183

conflict(s)

Feedback:

Requires

this

PR
your

attention

at

the

moment?
Yes,

I

need

to

take

action


No,

no

action

is

needed



⚡

Add

a

controller

and

reponse

for

ocs
Raydiation

wants

to

merge

owncloud:ocs-af

into

master


#13921
2

hours

ago

Refactor shared storage
icewind1991 wants to merge owncloud:shared-storage-use-wrappers into master


 #12086
3 months ago

In collaboration with

← Previous – Next →

apply a non-empty string for path components which ...
DeepDiver1975 wants to merge owncloud:fix-7871 into master

 #8040
10 months ago

Fig. 3: The user interface shows an ordered list of pull requests
that need attention.
our user survey), the visualizer supports filtering pull requests
based on specific branches, originating in specific authors,
having conflicts or tests and being in a mergable state. It
also supports sorting pull requests based on a multitude of
criteria, including all features reported in Section II-B. A key
feature of the visualizer is support for user feedback on the
prioritization; the user can report if the proposed prioritization
order is correct and change it to indicate what is the correct
one. At the moment, this information is only collected; in the
future, we plan to use it in order to improve the prioritization.

The visualizer is implemented as a static web application;
a screenshot of its main page can be seen in Figure 3.

IV. INITIAL EVALUATION

A. How good are the activity predictions?

To select an algorithm to base our prediction engine on, we
used historical data from 475 projects and three commonly

used machine learning algorithms: Logistic Regression, Naı̈ve
Bayes and Random Forests. The target of the test was to
compare how well models build with each algorithm could
predict whether a pull request would become active in the
next time window against the ground truth (what actually
happened). We ran the three algorithms against each project
with a 10-fold random selection cross-validation. The models
were trained with 90% training data and 10% testing data.

The results show that both Logistic Regression and Naı̈ve
Bayes perform badly on precision (0.36 and 0.34) and ac-
curacy (0.62 and 0.60), which were our top priorities. On
the other hand, Random Forests perform better overall with
a precision of 0.64 and an accuracy of 0.85. To improve
the performance, we tried several optimisations like dataset
balancing and feature pruning to no avail.

The results show that using Random Forests, we can predict
with relatively high accuracy (86% on average across projects)
whether a pull request in a given time frame of its life will
be active in the next one. This is an important result for
building a prioritizer service, as it gives us the confidence to
recommend a default ordering to the service user. Moreover,
as the quality of the prediction varies across projects, we
can build preprocessing phases to determine whether default
recommendations can be useful. However, there is room for
improvement: by selecting more representative features, or
custom features for each project, we can account for variations
of pull request handling practices. Moreover, user directed
evaluation (already implemented in the visualizer) can help
retrofit our machine learning model with user preferences.

B. Performance characteristics

The PRioritizer runs incrementally on a set of pull requests.
An initial import involving training on a repository takes
significantly longer than a normal run. The time required to
import ranges from a few minutes, for projects with less than a
hundred pull requests to a few hours for the biggest of projects.
After initial import, the prioritization time depends on the
number of open pull requests: for a medium sized project (30
open pull requests), the processing takes less than a second, As

24%

38%

62%

76%

86%

76%

62%

38%

24%

14%

It is easy to
get an

overview of
the state of

the pull
requests of
the project

It is easy to
find what pull

request to
work on next

The filter
lacks support

for some
important

fields

Using the
prioritizer

service causes
too much
overhead

Some pull
requests show

incorrect
information

100 50 0 50 100
Percentage

Response Strongly disgree Disagree Agree Strongly agree

Usefulness of the Prioritizer service

33%

43%

43%

48%

48%

52%

71%

67%

57%

57%

52%

52%

48%

29%

Automatic
ordering

Test code
filtering

Target branch
filtering

Pairwise
conflicts

inspection
sorting

Contributed
commits

inspection
sorting

Accept rate
inspection

sorting

Size
inspection

sorting

100 50 0 50 100
Percentage

Response Useless Not so useful Useful Very useful

Usefulness of Prioritizer features

Fig. 4: User evaluation of the service and individual feature usefulness

a service, the PRioritizer is run on a machine featuring a 3 GHz
Quad core CPU and 16 GB of RAM. Without significant effort
put on performance optimization, it is capable of prioritizing 7
pull requests and can simulate 400 pairwise merges per second.

C. User Evaluation

We performed a preliminary user evaluation in order to
guide our future developments of PRioritizer. For each of the
450 projects we used for model building, we invited core
team members of those projects to use it. The invitation
was sent by personal email containing a private link to the
prioritizer installation for their repository and a survey. The
survey consisted of 4 odd Likert-scale questions and 4 open
ended ones. The Likert-scale questions invited users to rate the
usefulness of specific features and the overall service quality
while the open ended questions asked the users for missing
features or potential improvements. We received 21 answers.

Overall, as can be seen in Figure 4, the usability of
PRioritizer has been positively perceived by human evaluators.
They overwhelmingly state that PRioritizer would not cause
extra overhead (86%) and that the PRioritizer interface can
provide an easy to comprehend overview of the overall project
pull request status (76%). In the open ended responses, the
users indicated that pairwise conflict detection, target branches
and the pull request contributor profile were favourite features.
As R1 states: “I can see at a glance which PRs can be merged
automatically. For some reason the Github PR interface does
not show this, you have to click on a PR to find out if it can
be automatically merged. . . ”.

The main highlight of the service, automatic prioritization,
received mixed reviews; an equal number of people think that
it is very useful and not useful at the same time. From the open
ended answers, we found that integrators do not understand
how automatic prioritization works. As R17 puts it: “It can
show us the most pressing pull requests. However, it is unclear

how this ranking is established, so I’d hoped to know why a
pull request is considered more urgent then others”. As such,
86% of the integrators mentioned that they want more insight
on how the automatic ordering works in future versions.

Finally we asked the respondents if they would use
PRioritizer for their project. 57% (12) of the respondent gave
a positive answer. We correlated the size of the project to the
probability that integrators would give a positive answer to the
above question and found that integrators in bigger projects
tend to find prioritizer more useful (ρ = 0.4307).

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a pull-request prioritization
approach called PRioritizer. PRioritizer enables a priority inbox
style approach for integrators that face challenges in the
face of multiple concurrent pull requests. The priority inbox
approach does not only take static information with regard
to pull requests into account, instead it also considers the
dynamics of pull requests. A preliminary user study has shown
that PRioritizer provides functionality that GitHub is currently
lacking. In particular, the participants appreciated the easy to
comprehend overview of the overall project pull request status,
the pairwise conflict detection, target branches and pull request
contributed profile. The verdict for the automatic prioritization
is mixed, with participants requesting more insight on how the
automatic ordering works.

Our three main avenues for future work are: (1) adding
more insight into how the prioritization works, (2) enabling
the incorporation of the user feedback into our algorithm and
(3) improving scalability.

ACKNOWLEDGEMENTS

The authors would like to thank Audris Mockus for discus-
sions that influenced the design of the prioritization algorithm.

REFERENCES

[1] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in Proceedings of the 37th International Conference on
Software Engineering (ICSE), 2015, to appear.

[2] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR).
IEEE Press, 2013, pp. 233–236.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 10:1–10:35, Aug. 2011.

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC/FSE).
ACM, 2009, pp. 111–120.

[5] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE). ACM, 2011, pp.
365–375.

[6] D. Conway and J. M. White, Machine Learning for Email: Spam Filtering
and Priority Inbox. O’Reilly, 2011.

	Introduction
	Prioritizing pull requests
	Modeling
	Features

	Design and Implementation
	Initial Evaluation
	How good are the activity predictions?
	Performance characteristics
	User Evaluation

	Conclusions and Future Work
	References

