
Distributed Component Architectures Security Issues

Giorgos Gousios Efthimia Aivaloglou
Stefanos Gritzalis

Department of Information and
Communication Systems Engineering

University of the Aegean, Samos, Greece
cs980[0,1]1@icsd.aegean.gr, sgritz@aegean.gr

23rd November 2004

Abstract

Enterprise information systems and e-commerce applications are tightly integrated in today ’s
modern enterprises. Component architectures are the base for building such multi-tier, distributed
applications. This paper examines the security threats those systems must confront and the solu-
tions proposed by the major existing component architectures. A comparative evaluation of both
security features and implementation issues is carried out to determine each architecture’s strong
points and drawbacks.

Keywords: Components, Component Architectures Security,CORBA, J2EE, .NET

1 Introduction

The intrusion of the Internet and e-commerce in enterprise information systems has stirred those
systems away from monolithic design and deployment. Modern enterprise applications are based on
multi-tier architectures that distribute the business logic, and therefore the load, in multiple sites. Such
a design allows resource reuse, good scalability by adding new machines that operate with existing
software and security as a consequence of multiple gates and gatekeepers being linearly placed in
front of data. Component architectures are mainly targeted in supporting this kind of distributed
applications.

A component is a small binary object or program that performs a specific function efficiently and
is designed in such a way to easily operate with other components and applications. From a program-
matic point of view, a component is a ‘physical and replaceable part of a system that conforms to and
provides the realization of a set of interfaces’ [19]. Components differ from libraries or objects in
that they are loosely connected to an application (no compile time linking) and in that they are often
distributed across a domain. Existing component architectures serve as a medium for executing calls
to a remote component and to provide the runtime environment that makes remote procedure calls
efficient and secure.

The general notion of a component architecture is described in Figure 1. The application only
needs to know about the component’s interface. This is usually knowledge assumed at the applica-
tion development phase, although it can be obtained dynamically. Interfaces are either part of the
programming language (e.g. Java) or are described using a formal declaration language (e.g. the
Interface Definition Language (IDL)). After acquiring an interface, the application executes a call
using the methods described in the interface. The call is transparently forwarded to the component
server by therequest broker, a software medium between the caller and the called component that acts

1

2,3:Component
stub lookup &
acquisition

7:Unmarshal
method call
& arguments

 Server

 Components

 Component

 Component

Component
skeleton

 Registry

8,9:Lookup
component
instance,
call method
& return
results

10:Marshall
method call
result

Component
stub

 Client Application

1:Request
component stub

5:Remote
method
call

4:Stub
instance
returned

12:Return
method
result

6:Marshal
method &
arguments

11:Unmarshal
result

Request Broker

Figure 1: The sequence of events in a generic component architecture

as a software bus and is mainly responsible for transferring method arguments and returned results.
Method arguments and results aremarshaled(or elseserialized) in a form suitable for the request
broker used. The component server usually maintains aregistryof the components it offers, which
in turn stores information about the component and the componentstub. A stub is the intermediate
between the caller and the transport mechanism, while theskeletonserves the same purpose at the
server side.

Security for a component architecture is a necessary prerequisite. Since most component invo-
cations result in sending data over a (possibly untrusted) network, using commonplace networking
technology, security mechanisms should be included in order to ensure message confidentiality and
integrity. Also, these architectures are commonly used to implement business logic using data stored
in databases, so access control mechanisms, based on user identity or system credentials, need to
be in place to protect data from misappropriation. Furthermore, system provided services such as
auditing are required to be implemented inside a component architecture to compensate the need of
accountability and provide fine-grained logging and possibly non-repudiation services.

This paper discuses security issues rising in distributed component architectures. The architec-
tures analyzed areOMG CORBA, theJ2EE platform and Microsoft’s .NET. Section 2 is about the gen-
eral security threats in a distributed component environment. Sections 3, 4 and 5 provide an overview
of each component architecture and an introduction to its security scheme. Section 6 describes how
the main security requirements are covered by each of the architectures. Finally, in Section 7, a com-
parative evaluation of the security features offered by the three technologies is conducted along with
a presentation of implementation specific issues, with references to the security threats presented in
Section 2.

Prior studies

Component architectures are an actively studied subject in both academic and business environments.
The CORBA security service [14] [6] and its applications [20] in various domains has attracted most
of the security researcher’s attention. Little work has been done for the other two architectures,
mostly from industry consultants [17]. This paper tries to compare and contrast these technologies
both in terms of security features offered in response to defined security threats and in terms of
implementation issues that are of great concern if a system is to be deployed.

2

2 Security Threats

By carefully examining the generic component architecture in Figure 1, one can draw useful conclu-
sions about the security issues threatening such a system. All component calls are directed through
the middleware which most times operates using common networking infrastructure such asTCP/IP.
A malicious user could eavesdrop the network connection thus tracking down all interchanged mes-
sages. Since most request brokering protocols are open standards, the malicious user could decode
the messages and steal identity information about the calling user. Such information could be used
in order to invoke components masquerading as an other user. Security could be compromised even
more if the malicious user manages to bypass security checks, due to bad authorization setup, and
tamper with system and application logs. A nearly complete list of security threats in component
architectures, including the threats applying to web services [15], can be summarized into the follow-
ing:

1. Disclosure of confidential information. Eavesdropping on an insecure communication line, so
gaining access to confidential data. Authorized or unauthorized users get access to important
information.

2. Violation of data or code integrity. Tampering with the communication line by injecting or
removing data. Replacing downloaded code with malicious code. Provide malicious code as
application code.

3. Misappropriation of protected resources. Security breach that allows unauthorized user to use
protected services.

4. Compromise of accountability. Destroy auditing information or non-repudiation proof. User
masquerading someone else so as to attribute actions to wrong person.

5. Misappropriation the compromises availability. Denial of service attacks. Physical communi-
cation line attacks.

In order to respond to these security challenges, (except from attacks against system availability,
which are assumed to be prevented by the underlying network or operating systems services) all com-
ponent architectures offer a vast set of security related features. Although the implementation details
in these features may defer, the general principles are more or less the same. Identification of princi-
pals is established using authentication mechanisms, while access controls can prevent unauthorized
access to objects. Information confidentiality and integrity can be enforced using communication
security mechanisms. Misuse of the system can be detected by keeping audit logs which, in conjunc-
tion with non-repudiation services can respond to the need for accountability. Finally, security policy
administration methods are of great importance when the complex security policy expression rules
needed for middleware systems are put into practice. All the above considered, the security features
each platform must provide are presented categorized as follows:

1. Identification and authentication of principals (human users or objects) to the system or mutual
authentication between objects.

2. Authorization - object access control.

3. Delegation of privileges during a chain of calls.

4. Security of communication between objects, message protection.

5. Security auditing.

6. Non-repudiation of data origin and receipt.

3

7. Administration of security policy.

It should be made clear that bothCORBA andJ2EE are platforms defined by specifications. The
difference is that while theJ2EE specification defines the minimal set of requirements for the com-
plying systems, theCORBA specification defines the maximum set. AllJ2EE products are required to
include all the functionality specified, while, to the best of our knowledge, there is noCORBA security
service product implementing the full functionality of the security specification. The .NET platform,
while built upon open standards, is only fully implemented by Microsoft until now, so we examine
Microsoft’s implementation details.

3 Common Object Request Broker Architecture (CORBA)

3.1 Introduction

Common Object Request Broker Architecture (CORBA) is a component framework that allows the
design and implementation of distributed object-oriented applications in a standardized manner that
guarantees portability and interoperability. Several implementations ofCORBA exist, in a variety
of programming languages and environments, which all implement a common set of interfaces, de-
scribed in the framework specification.CORBA components may be implemented in a variety of
languages; interoperability is preserved as long as their interfaces are formally described using the
Interface Definition Language (IDL).

The key component in theCORBA architecture is theObject Request Broker (ORB) [1], which
provides the mechanisms for applications and objects to interact, even if they reside in heterogeneous
environments. The communication protocols used are the General Inter-ORB Protocol (GIOP) and its
Internet Inter-ORB Protocol (IIOP) specialization for TCP/IP based networks. Apart fromORB, the
specification defines a collection of object services, which reside outside theORB core and provide
basic capabilities for using and implementing objects. TheCORBA security service is part of this set
of components.

3.2 Security Overview

To respond to the need of securingCORBA systems while maintaining their portability and interoper-
ability, OMG has developed theCORBA Security Service specification [2]. The specification defines
two levels of security functionality, so that any product that implements the specification needs to
be compliant with a level. Level 1 provides a first level of security for applications that are unaware
of security, while Level 2 provides more security facilities and deals with applications which are in
position to interact with the security service in order to specify the exact security features used. The
CORBA Security Service does not enforce the use of any specific security mechanisms. Moreover,
the service interfaces are defined in order to allow different security service implementations to be
substituted and incorporated on a singleORB.

CORBA Security Service specification includes theCommon Secure Interoperability(CSI) pro-
tocols to support the establishment of secure communication between objects, and therefore enable
interoperability even between differentCORBA security service implementations. Three functionality
levels of secure interoperability are defined, the highest of which (CSI level 2) supports identity and
privilege based policies with controlled (from the initiating principal) delegation and provides the full
functionality ofCORBA Security Service. The main communication protocol defined inCSI is Secure
Common Inter-ORB Protocol (SECIOP), which is used in combination with theGIOP/IIOP protocol,
enabling secure transition ofGIOP messages. CSI is independent of the security technology used
to provide message protection. The specification provides interfaces for the use of existing security
protocols (SSL[10], Kerberos[13],SPKM[4] andSESAME[7]) as a medium for secure interoperability.

A higher level protocol defined by theCSI specification is the Security Attribute Service (SAS),
which is designed to be used in environments where transport layer security such as that available

4

Client object Target object

ORB core

Access
Control

Secure
Association

ORB security services

Access
Control

Secure
Association

ORB security services
Audits Audits

Target object
reference

Credentials

TCP

GIOP

SECIOP/
IIOP/

SSLIOP

client
access

decision

Authenticator

target
access

decision

Figure 2: The main components ofCORBA security.

via SSL/TLS or SECIOP, is used to provide message protection.SAS protocol enables interoperable
authentication, delegation and privilege functionality that may be applied to overcome corresponding
deficiencies in an underlying transport.

4 Java 2 Enterprise Edition (J2EE)

4.1 Introduction

J2EE is a multi-tier component based architecture which extends the standard Java platform to support
distributed, large-scale applications. The back-end tier consists of a database, accessed using the
JDBC specification. The core of the architecture, the middle tier(-s), is described by theEnterprise
Java Beans (EJB) specification. The front-end tier is often implemented as a web interface or a
standalone application. The web interface makes use of theServletandJSPspecifications to provide
web services. The application interface is a normal user application written in any language that
supports theInternet InterORB protocol (IIOP). Each tier is associated with acontainer, a program
that loads, executes and possibly serves the components it holds, while offering some value added
features, for example naming or auditing services.

The EJB specification definesEJBs to be‘components of distributed transaction-oriented enter-
prise applications’. EJBs can either be sessionEJBs, which implement transactions and are executed
on the behalf of a single client in the context of a session, or entityEJBs, which map to database
records and allow an object view of the underlying data. A recent addition to the specification also
defines the existence of message drivenEJB’s which are mainly responsible for database updates
upon client message receipt. An important feature of theEJB specification is the inherent support
for distributed transactions. TheEJB container is responsible to maintain instances ofEJB’s, to pro-
vide standard services described by theJ2EE specification, e.g. naming and messaging services,
and to handle the communication details with clients or other servers.EJBs are invoked using the
RAMI -IIOP protocol for remote invocations or their home interface for local invocations. Using the
industry-standardIIOP protocol allows interoperability with existingCORBA-based client and server
applications.

5

TCP/IP

SSL

HTTP/SOAP

Web client

J2EE server

<<Role>> <<Role>>

 Web container

JSP

Servlet

EJB container

EJBEJB

EJB

TCP/IP

SSL

RMI/IIOP

<<Role>>

<<Role>>

Authentication

Basic/Digest/Certificate Certificate/JAAS

<<Credentia ls>>

Application client

TCP/IP

SSL

RMI/IIOP
HTTP/SOAP

<<Credentia ls>>

DBTCP/IP

SSL

JDBC

<appl i cation>
<securi ty-role>
 <role-name>
 user
 </role-name>
</securi ty-role>
<ejb-ref>
</ejb-ref>
</appl i cation>

application.xml

<server>
<securi ty-role>
 <role-name>
 user
 </role-name>
 <user-name>
 user1
 </user-name>
</securi ty-role>
</server>

server.xml

Figure 3: The main components ofJ2EE security.

4.2 Security Overview

The J2EE platform is paying important attention to security by design. The programming model
followed attempts to leverage existing security services, rather than defining new ones, and provide
a ‘secure-by-default’ approach to application components. The specification defines three important
terms for security:

• Principal: A principal is an entity that can be authenticated, using an authentication technology,
by its principal name and authentication data.

• Credential: A credential stores or references information forsecurity attributes(e.g. access
permissions, auditing information) and are provided by the external mapping of principal iden-
tity to an enterprise-wide security system (e.g. Kerberos, X509 certificates). Credentials can
be used to authenticate a principal to aJ2EE service.

• Security Domains: A security domain, or else a realm, is a logical part of the system where a
specific security policy is enforced.

The J2EE platform urges for, albeit does not mandate, adeclarativesecurity model. All security
related resources are declared in a specification-definedXML variant by the application deployer,
instead of being hardcoded into the components. Security services are almost exclusively provided
by the container. This allows flexibility in the deployment process and abstracts the business logic
from the security policy that should be enforced to components that materialize it.

5 Microsoft .NET

5.1 Introduction

.NET is an initiative driven by Microsoft that aims to provide desktop users with easy access to web
services. Contrary to common belief, the main parts of the .NET framework are open specifications
and Microsoft’s implementation of .NET is only extensions to the standard. As most enterprise plat-
forms today, .NET is a multi-tier platform supported by a backend database and allowing for web or

6

W
eb

c

lie
n

t
A

p
p

lic
a

ti
o

n
c

lie
n

t
web server (iis)

Web
services

Remoting
Services

ASP.NET
application

SSL/IPSec

R
P
C

A
u

th
en

ti
c
a

ti
o
n

Entrerprise services

A
u

th
en

ti
c
a

ti
o
n

W
in

W
eb

S
Q

L

COM+
Role

.NET/User
Role

Role

SQL
Server

NTFS
Permissions

Domain
Server

Authentication &
Authorization resources

Active
Directory

Figure 4: The main components of .NET security.

application interfaces to process data. .NET is specifically targeted to supporting web services; it in-
cludes integrated support forXML -RPCandSOAPwhile extending the already existingASP dynamic
web content technology [16] [12].

Components in .NET are classes that implement theIComponent interface. Typically, compo-
nents have properties and can receive and send events. Components are hosted bycontainersand a
container can host multiplesitesof similar components. A component is only allowed to commu-
nicate through its site with external resources. Components targeted for use at the middle tier are
referred to asservicedcomponents and can use both .NET and COM+ 1 specific functionality (En-
terprise Services). .NET is responsible for providing additional services such as object pooling and
caching to serviced components. Serviced components are packaged and distributed inassemblies,
which can also contain component resources and security policies..NET can encapsulate existingCOM

components into assemblies or expose .NET components toCOM. Remote invocation of serviced
components is performed using theRemotingmechanism or Web Services. Remoting is the process
of sending objects by value or by reference to a remote component and thus implement a remote call
and can be performed overHTTP (usingSOAP) or TCP communication channels.

5.2 Security Overview

The security model used in .NET is heavily based on existing infrastructure. The basic security ser-
vices (authentication, resource access control) are provided by the operating system, while extensions
also require Microsoft programs to be installed (eg naming services). This is an approach that can
harm interoperability but the number of services bundled with Microsoft server software seems to
leverage the situation. .NET can also use Kerberos for basic security requirements.

Security in .NET is mainly based onroles, policiesand Access Control Lists (ACLs). ACLs as-
sociate available resources with permissions a user or a group of users has on a particular resource.
ACLs are implemented by theNTFSfilesystem. Permissions can include filesystem operations or code
execution permissions. A role is named set of principals that have the same privileges, while a prin-
cipal is the identity of a single user along with the groups she belongs to. A policy is a configurable
set of rules that .NET follows when determining the permissions to grant to principals.

It should be made clear though that the .NET framework is the authority that enforces a security
policy rather than Windows security. Windows security is the second layer of security that is applied.
For example the security policy may allow an assembly to access the file system butACLs on the files
don’t allow access to the assembly calling principal.

1COM+ is a seamless merge of the traditionalCOM architecture, theDCOM architecture which allows distributing compo-
nents to multiple sites and the Microsoft Transaction server which is used for distributed transactions with some value-added
services, for example the Microsoft message queue.

7

6 Overview of security features

6.1 Authentication

CORBA The authentication methods available at eachCORBA security service product depend on
the implementation, since the specification does not dictate any particular mechanisms that should be
used. During authentication, a principal normally supplies its security name, the authentication in-
formation needed by the particular authentication method and its privilege attributes. The most usual
types of authentication information required from principals are passwords or cryptographic keys,
especially for system entities [14]. The privilege attributes are determined by the access policies
enforced by the system and include the principal’s access identity, roles, groups, security clearance
and capabilities on specific objects. The specification also includes identity attributes for other pur-
poses, like enabling principal accountability, signing messages or component usage charging. The
Credentials object (Figure 2) is created after the authentication to store these attributes, along with
information for establishing secure associations.

J2EE The authentication methods supported in aJ2EE environment depend on the end client. In
the case of web clients there are three forms of authentication:HTTP basic authentication (clear text
username and password), form based authentication (custom looking authentication form) andHTTPS

authentication where authentication data are encrypted using theSSL protocol before being send to
the client. Application clients use the methods provided by the application container, which are not
strictly defined by the specification. Other concepts of authentication provided by theJ2EE platform
are the concept of lazy authentication, where a user can navigate through a web or application inter-
face until a protected resource is requested, and the concept of guest user account where anEJB can
only perform a constrained set of functions. AJ2EE system can also be integrated with enterprise
authentication mechanisms (e.g. Kerberos), although this is not strictly required.EJB containers can
either rely on the front end tiers to acquire authentication data or implement authentication using the
CSIv2 protocol.

.NET The .NET platform authentication depends on the client. Web clients can authenticate using
the classic methods provided byHTTP or by using the centralized Passport service. Application
clients can useNTLM (the authentication service provided by Windows), Web Services or Kerberos
authentication. Both clients can use certificate authentication. Principal identities can be stored in the
server’s operating system user database or at an external resource, like a database table or the Active
Directory service. Authentication for applications directly targeting Enterprise Services is performed
by the serviced component container and is based on theRPC authentication method introduced by
DCOM/COM+. An important thing about authentication in .NET is that not all authentication methods
provide the same functionality after authentication. Some authentication methods can be used to
transfer identities from the authenticating process to another (see delegation) while others cannot.
Web services that use serviced components can also authenticate their users using customXML tags
in theSOAPmessage header, and the authentication is done by the component container. Web services
security in .NET adheres to theWS-SECspecification [8].

6.2 Authorization

CORBA Access control security policies ofCORBA are divided in two layers: object invocation ac-
cess policies, which are enforced automatically on object invocation, and application access policies,
which are enforced within the object implementation.CORBA security service specification includes
only the object invocation access control service, whose basic components are the Access Decision
Functions. Client side access decision functions define the conditions that allow the client to invoke
the specified operation to the target object, while target side access decision functions define the con-
ditions that allow the object to accept the invocation. The information used for access control is the

8

client’s privilege attributes and the target object’s control attributes, like the object’s classification
or access control lists. The specification includes a wide range of access policies, including access
control list schemes, label-based schemes and capability schemes.

J2EE The authorization mechanisms provided by theJ2EE platform are used to control access to
code based on identity properties and to identify the principal calling a component. Code access
control is done by the container in order to not permit components to use methods that can compro-
mise the container security. Principal authorization is done in order to protect security domains from
unauthorized access. Each container in theJ2EE environment serves as an authorization boundary so
that all incoming requests must first pass authorization tests. The authorization process is abstracted
from the code usingsecurity roles, that describe groups of principals that should have the same set of
permissions. Each principal is associated with a security role, according to the credentials it obtained
during authentication. For each component, one or moremethod permissionsmap security roles on
methods provided by the component. The authorization mechanism also allows components to be
called with different credentials than those obtained by the caller.

.NET Authorization in .NET can either be role-based or resource(ACL)-based. The latter case is
mainly used to protect filesystem resources from being accessed from malicious code or to secure
physical files or devices. In the former case, users are mapped to roles by the administrator. Roles
can contain Windows groups and user accounts and some roles are already provided by the .NET

platform. The administrator can define new roles and associate roles with access permissions to
serviced components, methods or interfaces. The access control operation is done by the component
container before any component activation or component method call, utilizing the role and the ‘user-
in-role’ lists. Enterprise services authorization is based on predefined or definableCOM+ roles.

6.3 Delegation

CORBA CORBA security service supports privilege delegation in order to allow to an object in a
chain of objects act on behalf of the principal that initiated the chain. The initiating principal or the
intermediate objects can specify restrictions on the privileges to be delegated or the target objects that
can use those privileges. The interfaces that are specified for delegation control allow five types of
delegation policies: No delegation, simple, composite, combined privileges and traced, each defining
a different set of privilege attributes being transferred. Applications can be unaware, as theORB

can enforce many delegation controls automatically according to the delegation policy specified, or
security-aware so as to specify themselves the delegation controls they need. Applications are not yet
allowed to specify controls such as target restrictions.

J2EE Principal identities in theJ2EE are propagated by default; a called component knows about
the identity of the caller who initiated a chain of calls. The propagation can be done using different
mechanisms for different occasions, for example propagated data can be an X.509 certificate when
there is trust relationship between the caller and the component container or aCSIv2 token when
using server only authentication. However, this process does not require delegation of credentials,
since mapping of identities to credentials is not required to be done by theEJB container. As a
consequence, a called component cannot identify the credentials used by the principal that initiated
the request without using an external credentials mapping mechanism (eg Kerberos).

.NET Delegation in .NET depends on the security service used by the hosting platform. After au-
thenticating, and if the server is configured to, the authenticated principal ’s token is attached to the
server thread that serves the client. In order to be able to be delegated, this token must have network
credentials. Most authentication types in .NET allow delegation provided that certain circumstances

9

are fulfilled, for example when the authenticated account is a domain account. The .NET documen-
tation also suggests an one-hop credential transferring scheme, called impersonation, which relies on
writing user credentials to a common store while the user is online. Serviced components (Enterprise
Services) automatically delegate principal identities when calling other serviced components.

6.4 Communication security

CORBA For the establishment of secure interactions between objects, theCORBA Security Service
Specification includes the notion ofsecure associations. The characteristics of a secure association
depend upon the client and target object’s individual security policies, which specify the strength
of integrity and confidentiality protection needed, and the common security mechanisms available
between them. The mechanisms used to establish secure associations depend on the implementation.
All CSI conforming implementations support Kerberos and, optionally,SPKM andSESAME. Message
protection might be provided throughSECIOPor by usingIIOP over anSSL protected channel. A
problem that has been identified withCORBA security protocols and architecture and is that it does
not easily integrate with firewalls [14]. Solutions, mainly through changes at theORB level, have
been specified [3].

J2EE The component invocation security inJ2EE is built on top ofIIOP over SSL. Both the client
and the container must support theSSL or the equivalentTLS protocol and be configured to use a
trusted common certificate authority. The client can be pre-configured for secure invocation or learn
about it using theCSIv2 field of anEJB’s IOR registration information. UsingSSL, confidentiality
and integrity of the transferred data are also pertained. The specification encourages the exchange of
information between the application designer and the application deployer so as to avoid using secure
communication mechanisms for invocations that do not really require it.

.NET Remoting security depends on the communication channel; should it be anHTTP communi-
cation the security mechanisms are provided by theIIS server, else wire-level security can be used.
In the former case,SSL is used to secure communications while on the laterIPsec orSSL are recom-
mended.

6.5 Auditing

CORBA CORBA security specification identifies two categories of audit policies: system audit poli-
cies, which control the auditing ofORB andCORBA Security Service events, and application audit
policies, which control which events are audited by applications. System audit policies are enforced
automatically over all applications. The specification defines a set of event families and event types
within each family. It includes how audit records are generated and then written to audit channels,
but not how they are filtered, analyzed or kept secure afterwards.

J2EE The J2EE specification does not define a standard auditing mechanism. It is left to the con-
tainer provider to support auditing using a custom solution.

.NET .NET implements auditing by using the Windows logging service. An application can im-
plement custom logging for tracking user level actions using the provided logging classes. Also,
framework level logging is supported to report failed resource access requests or intentional attempt
to misuse resources, with an adjustable logging detail.

10

6.6 Non-repudiation

CORBA CORBA security specification includes a stand-alone Non-Repudiation service that is de-
signed for security-aware applications and used separately from the standard security service on the
ORB level. TheNR service, according to the specified non-repudiation policy, enables the creation
of evidence related to the creation and the receipt of a message, as well as evidence relevant only in
the context of the application itself, but does not provide evidence that a request on an object was
successfully carried out, since this information is available only on theORB level. NR service is based
on theISO Non-Repudiation Framework, only providing for evidence generation and verification, but
not evidence storage, retrieval and delivery services, which are assumed to be provided by external
components and authorities. TheNR service is an optional feature for products compliant with the
CORBA security service.

J2EE The J2EE specification does not define a standard non-repudiation mechanism, as a conse-
quence of not providing an auditing mechanism.

.NET There is no standard non-repudiation facility provided by .NET.

6.7 Security administration

CORBA For the administration of principals the specification defines different kinds of privilege
attributes like groups, roles and clearances. However, it does not provide interfaces for managing
privilege attributes, which depend on the implementation. Concerning object security, the specifica-
tion identifies three types of security-related domains: security policy domains, security technology
domains and security environment domains, but includes management interfaces only for security
policy domains. These interfaces allow administering of domain security policies for security as-
sociation, delegation, and access control. Some administrative problems stemming from the lack of
transparency of underlying security mechanisms used inCORBA security systems have been identified
[14][6].

J2EE TheJ2EE specification mandates the existence of user interfaces for easily configuring secu-
rity roles, role references and security domains. However, eachJ2EE container provider can imple-
ment a custom user interface and extend it to support vendor-specific enhancements to the security
services.

.NET Security in .NET is expressed with a combination of programmatic and declarative state-
ments. The programmer can specify some security attributes (special tags that are not part of the
language syntax) in the code that guide .NET to activate some security mechanisms. The assembly
constructor can also place security policies in the assembly that can be activated when the assembly
component is deployed. The application server administrator can use existing tools to enforce other
security policies than that provided in the assembly or the component code. Finally, theCOM+ and
.NET environments can place themselves predefined or user-defined security policies on the code.

7 Comparative Evaluation

7.1 Introduction

Comparisons among technologies on the same application field offer a means to contrast the func-
tionality and features offered and thus understand each technology’s weaknesses and strong points.

11

The comparison framework in this paper tries to provide a clear overview of the security features ana-
lyzed in detail in the previous sections and discusses issues that concern the practical implementation
of security for all technologies.

7.2 Feature Comparison

Table 1 summarizes the security features offered by each technology. The table shows that all tech-
nologies can cover most of the requested security features. Specifically, authentication options for
all types of clients are provided. It should be noted that theCORBA authentication scheme appears
stronger by requiring authentication of all principals, either human users or components, whileJ2EE

and .NET allow for trust relationships between components in the same site [11]. However, theJ2EE

implementation might be stricter and enforce authentication for all invocations. The authorization
and delegation schemes of all technologies cover most requirements, withCORBA supporting a wider
range of delegation policies, allowing for enhanced access control and accountability. All technolo-
gies use widely accepted and tested communication security mechanisms. Moreover, the use ofCSI

protocols, enables secure interoperability betweenCORBA and J2EE systems and betweenCORBA

implementations that offer different sets of security mechanisms.
Both CORBA and .NET include auditing mechanisms. AlthoughJ2EE lacks a standard auditing

service, allJ2EE server vendors offer auditing facilities in their products. Non-repudiation seems to
be the least supported feature, since even forCORBA it is optional for the compliant security service
products. However, this feature is only needed by large organizations which most times use external
enterprise-wide non-repudiation services. The means for security administration highly depend on
the implementation forCORBA andJ2EE systems, while in .NET standard methods are provided by
the host platform. Security administration might prove tedious if an implemented application uses
more than one technologies that co-operate in a site. The lack of a standard security administration
method can impose significant load on the administrating team, forcing them to express and apply a
single security policy in more than one ways.

Strengths and Weaknesses CORBA’s major advantage is the fact that it is platform and security
technology neutral. This enablesCORBA deployments to be used as a medium for secure interoper-
ability among heterogeneous applications. On the other hand, theCORBA security service is a very
complicated specification that has not been fully implemented yet.J2EE is a coherent application
framework which provides a standard way of expressing security but also allowing extensions to
it; vendor applications implementing the standard are expected to be fully compliant. Thus, should
the need arise, user applications can be easily upsized, especially considering that the platform is
hardware independent. The major drawback ofJ2EE seems to be that, trying to be as compatible as
possible, has left out important security related functionality such as auditing and integration with en-
terprise wide security systems. A standards-onlyJ2EE product allows security to be only expressed
and enforced in one way harming flexibility. .NET seems quite a promising platform. It incorpo-
rates all needed security features and is fully compliant with Microsoft current and prior security
implementations. It can serve very well as a platform for extending existing Microsoft oriented ap-
plications. However, it appears to be too tightly connected to Microsoft technology, especially when
regarding security. One of the strong points of both .NET and J2EE is that are both supported by
security specification and deployment applications, which can be helpful when expressing complex
security rules.

Development status J2EE and .NET are in active development status.CORBA development, while
officially not stalled, is not keeping up in pace with its two competitors, having almost two years to
introduce any major advancement. Since the version 2 of theJ2EE that introducedCORBA interoper-
ability, manyCORBA vendors are moving their business towardsJ2EE. Today, mostCORBA products
are compatible withJ2EE or even written in Java. On the other hand,J2EE is continuously evolving

12

Security

features

CORBA J2EE .NET

1. Authentica-

tion

Mechanisms depend on

CORBA security service im-

plementation. No particular

mechanisms specified.

The end client type des-

ignates the authentication

mechanism used. Web au-

thentication or custom made

authentication schemes can

be used..

Many authentication mech-

anisms, mostly Windows

depended. Can use web au-

thentication.

2. Authoriza-

tion

A variety of privilege types

(roles, security clearance)

and access policies (ACLs,

label schemes) supported.

Both client and target object

access control.

Role-based access control,

component method level

granularity.

Uses predefined roles, com-

ponent method level gran-

ularity or filesystem based

ACLs.

3. Delegation Various types of credentials

delegation policies. Ap-

plication specific delegation

control supported.

Principal identity only del-

egation. Can use external

mechanisms to delegate cre-

dentials.

Delegation ability based

on authentication scheme.

Most can delegate, under

specific circumstances.

4. Communi-

cation security

Secure interoperability via

CSI protocols. Message pro-

tection throughSECIOP or

SSL / IIOP.

SSL or TLS used to protect

IIOP messages. UsesCSIv2

to discover target security

capabilities.

Remoting calls are pro-

tected usingSSLor IPsec de-

pending on the communica-

tion channel.

5. Auditing Supports generation of au-

dit logs for predefined sys-

tem events.

No standard system auditing

mechanism.

Uses Windows logging ser-

vice. Audit trails generated

by the framework.

6. Non-

Repudiation

Standalone service for

non-repudiation aware

applications providing

evidence generation and

verification.

No standard non-

repudiation mechanism

No standard non-

repudiation mechanism

7. Security ad-

ministration

User management depends

on the implementation. In-

terfaces provided for ad-

ministering domain security

policies.

Implementation must pro-

vide its own tools for man-

aging users and security do-

mains.

User management provided

by Windows. Security poli-

cies can be specified in

various locations including

the code, the component

package or the application

server.

Table 1: Summary of security features offered by the examined technologies

13

under the procedures of the Java Community Process. The next major additions to security inJ2EE,
as described in theJ2EE specification will be an auditing system, support for more fine-grained data
access control, implementation ofAPI’s that expose the underlying authentication and authorization
mechanisms to the code, support for container based user registration to theJ2EE services and the
inclusion of a centralized deployment service. The .NET platform development is closed to public, so
no future directions are known.

7.3 Implementation Issues

The following section tries to clarify the differences among technologies in the field of implementa-
tion. The criteria were selected so as to cover the implementation issues that concern security.

External Dependencies This criterion specifies how strongly each architecture depends on the un-
derlying platform and existing security mechanisms in order to provide its security features. The
CORBA security service specification is platform neutral and does not dictate the use of specific se-
curity technology. However, portability of existing security services depends on the implementation,
although experience shows that most of them are designed for specific platforms. Both theJ2EE

specification and implementations are also platform independent, at least in theory. Libraries that im-
plement security services are universally portable, except when using platform specific mechanisms.
The .NET platform specification also cares about portability; however, the reigning current implemen-
tation, Microsoft’s one, strongly depends on the security features provided by the Windows platform.
Efforts have been carried out lately to provide a portable implementation forUNIX environments.

Transparency All technologies can hide details of the underlying security mechanisms from appli-
cation developers. The applications can have no responsibility for security, as the security policy is
automatically enforced at theORB level forCORBA and by the container forJ2EE and .NET. All archi-
tectures allow the implementation of security aware components, using specific methods that enable
security checks to be carried out by the user code. The amount of control left out to the developer
defers among architectures, withCORBA being the least restrictive.

Intra-Architecture Security Preservation Components ofCORBA and J2EE can communicate
using theIIOP protocol overSSL. In addition, bothCORBA and J2EE can use theCSIv2 protocol
stack, which enables interoperable authentication and integrity/ confidentiality mechanisms negotia-
tion. Communication between .NET components andCORBA or J2EE components is not supported at
the moment.

Security Scalability Security scalability is the ability to adapt to different levels of security require-
ments. All architectures provide some means for defining and applying security policies. TheCORBA

specification defines different levels of security functionality and secure interoperability, along with
the mechanisms that can be used to achieve each level, while security functionality inJ2EE can be
extended by the use of supplementary services and mechanisms provided by implementations (J2EE

specification provides only the minimal set of requirements). .NET is by default configured to be easy
to use, although stricter security policies can be enforced by carefully removing permissions from
selected users and assigning code execution restrictions to the appropriate components.

Development tools Good development tools can greatly assist developers in writing secure code,
either by preventing them from using potentially dangerous constructs (e.g.malloc / realloc in
C) or by allowing them inspect running code properties (e.g. memory leak detectors). Since most
times development tools depend on specific programming languages,CORBA has a definite advantage
being language neutral. .NET may support many languages, but all these languages are expressive

14

variations of the same class hierarchy. Microsoft has a good reputation in providing good devel-
opment tools, such as the Visual StudioIDE and the .NET core supports common security oriented
technologies for example memory management, that can both be used as a basis for secure program-
ming. Finally, Java is known to be a secure programming environment. Both free and commercial
tools exist that provide the Java developer with all necessary functionality to develop and test secure
code.

Compatibility with existing applications Existing applications, often referred to as legacy appli-
cations, most times present an obstacle to the evolution of an information system; reimplementing
them using modern technology can cost significantly both in terms of capital and productivity loss
while continuously extending them leads to inconsistent systems whose security administration is
painful. Is such environmentsCORBA’s independence of programming language and platform pays
off the price of high complexity.CORBA implementations exist in almost any possible platform and
therefore can interconnect legacy systems to modern applications. On the other hand if the decision
to re-implement the information system is made, all three technologies can be quite competent in
the security field. It should be noted that all technologies are mostly compatible with their ancestors
regarding security.

Cryptography - Public Key Infrastructure (PKI) support Cryptography in a distributed environ-
ment is a means for providing privacy to the end user and secure exchange of sensitive corporate
data. APKI architecture [5] provides the basic services for cryptographic applications such as gener-
ation, storage and distribution of public and private keys and certificate management and revocation.
A distributed component architecture can benefit from aPKI infrastructure in many ways, for ex-
ample to provide smart card services. Some basic cryptographic andPKI facilities that should be
provided in such an architecture are some form of hashing functions (MDx, SHAx), shared key (DES,
RC2) and public key (RSA, DSA) cryptography and certificate (X .509) management facilities. We are
overviewing the main cryptography facilities offered by each technology:

CORBA: The CORBA security service specification [2] does not include any specific requirement on
cryptography. Cryptographic services are expected to be provided in implementations for use
with secure component invocation. However, a separateOMG specification enables the use of
PKI services inCORBA components. This specification defines mechanisms to support a full
range of certificate related services. Combining required cryptographic facilities with thePKI

specification provides a good basis for implementing security services.

J2EE: TheJ2EE specification does not include any specific requirements on cryptography. The basis
of J2EE, the Java language, provides the required set of cryptographic related facilities toJ2EE.
All standard hash algorithms, shared and private key facilities are included. Also included are
advanced certificate management (Certificate Revocation Lists, Certificate Chains and Certifi-
cate Store access), random number generators and, perhaps most important of all, the ability to
change the default security infrastructure with a custom made one.

.NET: The .NET framework provides cryptographic facilities such as hash algorithms, shared key
encryption, public key encryption and certificate handling. It can also use thePKI facilities
included in recent versions of the Windows operating system thoughCOM interoperability and
thus support trusted third party access and certificate revocation lists.

User groups and professional support Support from technical groups plays an important role in
the deployment of complex technologies like those presented. A well supported technology, within
a security context, has some important advantages such as secure implementation paradigms and
security vulnerabilities auditing.CORBA is well supported both from software vendors and from
independent user groups. The problem seems to be that support is mainly focused on implementations

15

and many of them, especially the free ones, do not get professional level support.J2EE is probably
the most widespread of these technologies and there are a lot of profit and non-profit organizations
that support it, implementation-specific user groups and the Java community in general. For .NET

support is rather more focused, since it is a single framework and not a specification, and is mainly
backed by the software producer. Professional support does not seem to be a problem in any of these
technologies.

8 Conclusions

Component architectures are very important for today’s enterprises because they are the basis for
building integrated e-commerce and enterprise information systems. In this paper, the security fea-
tures of common component architectures have been examined. ForCORBA andJ2EE the presentation
and comparison were based on their specifications, while for .NET on Microsoft’s implementation.
The comparison pointed out that all platforms offer a satisfactory set of security features, though
CORBA seems to be the most feature rich, covering most evaluation criteria and offering many al-
ternatives for implementing security. However, it should be made clear that the security features of
CORBA andJ2EE depend on the implementation, being usually more extended than those described
in the specification forJ2EE and a subset of the specification forCORBA. The comparison results
show that security in distributed component architectures ought to be a judging factor for choosing
an architecture. While all three architectures examined offer a good amount of security-related func-
tionality and are almost equivalent for basic needs, minor details differentiate them and make them
more appropriate for certain application fields. Each architecture has its strong points and drawbacks
and it is that point, the drawbacks, that should be more carefully examined.

Component architectures are an active research and development area, as proved by the con-
tinuously evolving systems and architectures that emerge. Existing architectures offer a wealth of
security features but, do not put great effort on deployment. Further work in this area should be
the development of cross-platform methods and mechanisms for implementing and deploying secu-
rity policies in an abstract, yet flexible and detailed, way and the incorporation of non-repudiation
services conforming to theISO methodology.

Acknowledgments: The authors would like to thank Athanassios Vambakas (MSC Consultant) for
his help and positive criticism on writing the .NET section.

References

[1] CORBA: Core Specification. Technical report, OMG, November 2002.
ftp://ftp.omg.org/pub/docs/formal/02-11-01.pdf.

[2] CORBA Security Service Specification. Technical report, OMG, March 2002.
ftp://ftp.omg.org/pub/docs/formal/02-03-11.pdf.

[3] CORBA Firewall Traversal Specification. Technical report, OMG, January 2003.

[4] C. Adams. The simple public-key GSS-API mechanism (SPKM). Technical report, IETF,
October 1996. Online http://www.ietf.org/rfc/rfc2025.txt.

[5] Carlisle Adams and Steve Lloyd.Understanding the Public-key Infrastructures: Concepts,
Standards, Deployment Considerations. New Riders, 1999.

[6] A. Alireza, U. Lang, M. Padelis, and M. Schumacher. The challenges of CORBA security.
Informatik aktuell, 2000.

16

[7] E. Baize, S. Farrell, and T. Parker. The SESAME v5 GSS-API mechanism. Technical report,
IETF, November 1996.

[8] Chris Caller. Web services security. Technical report, IBM Corp., Microsoft Corp., Verisign
Inc., April 2002. http://www-106.ibm.com/developerworks/webservices/library/ws-secure/.

[9] Linda G. DeMichiel. Enterprise JavaBeans specification. v2.1. Technical report, Sun Microsys-
tems, 2002.

[10] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL protocol version 3.0. Technical
report, IETF, November 1996. Online http://wp.netscape.com/eng/ssl3/.

[11] Bret Hartman.Enterprise security with EJB and CORBA. New York John Wiley Sons, 2001.

[12] Michael Dunner J.D. Meler, Alex Mackman and Srinath Vasireddy. Build-
ing secure ASP.NET Applications. Microsoft Corporation, Novem-
ber 2003. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/secnetlpMSDN.asp.

[13] J. Kohl and C. Neuman. The Kerberos network authentication service (v5). Technical report,
IETF, September 1993. Online ftp://ftp.isi.edu/in-notes/rfc1510.txt.

[14] Ulrich Lang and Rudolf Schreiner.Developing Secure Distributed Systems with CORBA. Artech
house, 2002.

[15] Chen Li and Claus Pahl. Security in the web services framework. InProceedings of the 1st in-
ternational symposium on Information and communication technologies, pages 481–486. ACM,
2003.

[16] Microsoft Corporation.The .NET framework SDK Documentation, 2002. Included in the .NET
SDK package.

[17] Denis Piliptchouk and Vince Dovydaitis. Securing .NET and enterprise Java: Side by side.
Computer Security Journal, 18(3-4):71–83, Summer/fall 2002.

[18] Bill Shannon. Java 2 Platform, Enterprise Edition specification, v1.4. Technical report, Sun
Microsystems, 2002.

[19] Diomidis Spinellis and Kostantinos Raptis. Component Mining: A Process and its Pattern
Language .Information and Software Technology, 42(9):609–617, June 2000.

[20] C.M. Westphall and J. Da Silva Fraga. Authorization schemes for large-scale systems based
on Java, CORBA and Web security models. InProceedings of ICON’99: IEEE International
Conference on Networks, pages 327–340. IEEE, 1999.

17

